Implementation and Deployment of IPv6 in Japan

Tatuya Jinmei
Toshiba Corporation/The KAME Project

IPv6 activities in WIDE

- The WIDE project
 - http://www.wide.ad.jp/
 - the largest research activity on the Internet in Japan
 - committed to IPv6 since 1995 (started a wg)
- The KAME project
 - a joint effort on IPv6 R&D by several companies
 - provided IPv6 referential implementation on *BSDs
 - 3 RFCs, >20 Internet Drafts
- The USAGI Project
 - a similar effort on IPv6 R&D for Linux
 - results have been merged to the mainline kernel
Contents

- IPv6 deployment activities in Japan
 - network and services
 - IPv6 DNS deployment
- Issues on IPv6 deployment
 - DNS, security, and others

WIDE IPv6 backbone (1)

- Nation wide, large IPv6 network
 - over 50 routers in the backbone
 - more than 60 "/48" sites
 - about 50 EBGP peers
- R&D network, but with "production quality"
 - with commercial routers
 - Hitachi, Cisco, Juniper, Foundry
 - experimental PC routers for advanced researches
 - zebra on BSD PCs (http://www.zebra.org/)
WIDE IPv6 backbone (2)

- Routing protocols
 - IGP backbone: OSPFv3
 - Within leaf sites: OSPFv3, RIPng
 - EGP: BGP-4+
 - Multicast: PIM-SM within WIDE
- IPv6 links
 - Ethernet, GbE, (tunnel, ATM)
 - PPP, PPPoE (in some limited places)

WIDE IPv6 backbone as of today
The IPv6 Internet (June 2003)

- Pink: Japan
- Orange: South America
- (http://www.jinmei.org/v6topology.jpg)

IPv6 services

- End hosts
 - servers: (mainly) FreeBSD and NetBSD
 - client hosts: *BSD, Linux, Mac OS-X, Windows XP
 - configure themselves by IPv6 autoconfiguration
- Today's typical Internet applications
 - DNS: BIND9
 - WWW: apache2
 - SMTP: postfix + IPv6 patch, sendmail
 - FTP: BSD’s ftpd, wu-ftp
 - SSH: OpenSSH
- Security tools
 - Firewall: FreeBSD ipfw, OpenBSD pf
 - Filtering at commercial routers
IPv6 deployment and operation in DNS

- IPv6 transport with BIND9
 - most DNS servers in WIDE enable IPv6 transport
 - accept/send DNS queries over IPv6

    ```
    listen-on-v6 { any; }
    ```
 - same for TLD servers in Japan
 - 3 "JP" servers (out of 6)
 - the "M" root server (in addition to B, F, and H)
- AAAA glues for "JP" at the root zone
 - already asked IANA

Summary of our experiences

- Works fine for basic operation
 - backbone routing is stable
 - various routers are interoperable
 - server applications run without troubles
 - and can communicate with clients
 - users are even not aware of IPv6
- We are now trying
 - yet other autoconfiguration
 - DNS server discovery by DHCPv6, multicast DNS
 - deploy new applications
 - home network appliances, IPv6 "toys", ...
 - (shown in tomorrow's presentation)
Issues on IPv6 deployment

DNS issues (1): IPv6 reverse maps

- Difficulties to configure IPv6 reverse zones
 - addresses that are not in the DNS
 - scoped addresses (e.g. link-local)
 - RFC3041 privacy extension
 - transition from ip6.int to ip6.arpa (RFC3152)
 - tend to cause lame delegation, communication delay
 - need to manage both for now
- Two approaches to manage both int and arpa
 - share the zone file
 - intuitive, but with some restrictions
 - trick with DNAME RR (for advanced users)
Sharing zone file for int and arpa (1)

- named.conf at primary server

 zone "9.1.8.4.0.0.0.0.2.0.1.0.0.2.ip6.int." {
 type master;
 file "2001:200:0:4819::.zone";
 }

 zone "9.1.8.4.0.0.0.0.2.0.1.0.0.2.ip6.arpa." {
 type master;
 //shared with ip6.int.
 file "2001:200:0:4819::.zone";
 }

- zone file at primary server (2001:200:0:4819::.zone)

 //;ORIGIN 9.1.8.4.0.0.0.0.2.0.1.0.0.2.ip6.int.
 //-->!!!doesn’t work
 c.f.1.8.1.7.e.f.f.d.a.0.8.2.0 IN PTR www.kame.net.

Sharing zone file for int and arpa (2)

- named.conf at secondary server

 zone "9.1.8.4.0.0.0.0.2.0.1.0.0.2.ip6.int." {
 type slave;
 file "bak/2001:200:0:4819::int.zone";
 masters ...
 }

 zone "9.1.8.4.0.0.0.0.2.0.1.0.0.2.ip6.arpa." {
 type slave;
 //unshared with ip6.int.
 file "bak/2001:200:0:4819::arpa.zone";
 masters ...
 }
DNS issues (2): packet size limitation

- Max UDP message size of 512 bytes
 - -> upper limit of # of addr of TLD servers
 - 13 for root and "com/net"
- draft-ietf-dnsop-respsize-00.txt (expired)
- be careful to add server addresses
 - whether it's IPv4 or IPv6
 - 5 or 6 are safe and typically enough
- EDNS0: complete solution
 - BIND 8 and 9 already use it by default
 - there is no reason to deny EDNS0
 - many deployed implementations support for it
 - providing backward compatibility
 - "deploy EDNS0, and then add IPv6 addresses for your DNS servers"

DNS issues (3)

- Broken DNS servers regarding AAAA
 - draft-ietf-dnsop-misbehavior-against-aaaa-00.txt
 - some load balancers behave badly for AAAA queries
- Most problematic cases
 - return NXDOMAIN for AAAA queries
 - fatal error on name resolution
 - NXDOMAIN will be cached
 - ignore AAAA queries
 - very long delay to make a connection
- No easy way out
 - if you use a load balancer, check it and complain to the vendor if it's buggy
Other pitfalls (1)

- AAAA exists, but no IPv6 service
 - due to lack of server config, no/poor IPv6 reachability, etc
 - some web browsers give up if a web server has AAAA but is unreachable over IPv6
 - once you add AAAA, be sure to provide complete IPv6 service with good reachability
- a tip at the trial stage: use different name space
 - we used to use "v6.wide.ad.jp"

Other pitfalls (2)

- Path MTU discovery blackhole
 - ICMP too big is filtered, and hosts keep sending large packets
 - more serious in IPv6
 - PMTU discovery is a basic assumption
 - do not filter ICMPv6 errors at FWs
- Rogue router advertisements
 - often happen from Windows XP with 2002::/16
 - just as bad as rogue DHCP servers
 - -> disable "network sharing" on XP machines
Security issues (1)

- Typical myths
 - "The e2e property (and IPv6) weakens firewall, it's bad for security."
 - "IPv6 is secure enough because it mandates IPsec."
- The facts
 - firewall is not perfect even today
 - virus mail, web bug, bringing infected PCs to the office...
 - regardless of the use of IPv6, security at end hosts is necessary
 - IPsec is very hard to use for novice users
 - no easy way of key management

Security issues (2)

- New security model for e2e communication is necessary
 - still under discussion...
 - WIDE started "secure6" wg for this purpose
 - draft-kondo-quarantine-overview-00.txt
 - "m2m-x" by NTT Communications
 - an attempt of deployable IPv6 security
 - by embedding certificate to devices and authenticating them in the ISP
 - (by a proprietary protocol, though...)
Summary

- IPv6 activities in WIDE
 - KAME/USAGI: provide referential implementation
 - WIDE IPv6 network
 - "production quality" by commercial routers
 - as well as experimental trial
 - commodity network service over IPv6
 - Mail, WWW, FTP, SSH,...
 - now working on next steps
- Identified issues
 - DNS reverse map: ip6.int and ip6.arpa
 - packet size and EDNS0
 - misbehavior against IPv6 queries
 - security issues (need more work)

Contact Points

- The KAME Project
 - http://www.kame.net/
- The USAGI Project
- HS247: IPv6 News&Links
 - http://www.hs247.com/
- FreeBSD ports
- NetBSD pkgsrc