IPv6
Part 2:
deployment and operational issues

Jun-ichiro itojun Hagino, Ph.D
KAME project/iijlab
itojun@iijlab.net
Tutorial overview

- **Part 1**
 - IPv6 protocol itself (packet format, ...)
 - Impact/relationship to other internet protocols (such as TCP/HTTP)
 - Implementation status

- **Part 2**
 - Deployment status
 - Operational issues, clues, tips
Why transition to IPv6?
Why transition to IPv6? - or why IP?

- Internet technologies are getting deployed everywhere
- Always-on connectivity is changing the world

- Every equipment has to be always-on, IP connected
 - Fridge, microwave, taxicabs, cellphones, gaming machines
 - Reduced cost of network operation, easier deployment of new apps, tighter integration with IP services (like email/web), wide variety of new applications/chances

- Use of IP = layer 2 independent
 - Can use cellular, 802.11, GbE, whatever available
 - Can switch to latest/cheapest technology as they become available
Why transition to IPv6?

- IPv4 supports up to 4 billion nodes only! (theoretical limit)
 - From address allocation efficiency, 100s of millions is the real upper limit
 - The limit is coming closer very quickly
 - Human population on the planet: 6 billion
- IPv4 has to be re-engineered
 - Was designed in 1970s, has a lot of missing features

- IPv6 expands IP address to 128 bits
- Supporting 3.4×10^{38} nodes
 - Should be enough for my lifetime at least...
- IPv6 incorporates recently-deployed technologies
 - Autoconfiguration and IPsec are mandatory
 - More friendly with mobility/diffserv
Emerging new applications

- Monitoring
 - Taxicabs/vehicles as distributed sensors
 - Wiper switch = rain sensor

- Additional services
 - Coffee shops/hotels connected to the net 24x7, with 802.11
 - Supply additional services (like wireless Internet accesses) to attract customers

- Peer-to-peer
 - Gaming/chat servers are suffering from excessive load due to client-client communication, resulting in giant server farms
 - If clients can communicate directly with each other, server could become smaller
 - With NAT, we can’t do it/doesn’t scale

- Kill legacy service appliances
 - Make cellphone a simple VoIP device, no need to deploy proprietary cellphone switches = reduced cost
"Killer apps" discussion is moot

- There are some people who are just waiting for killer apps on IPv6...

- IPv6 address space itself enables "killer apps"

- "Killer apps" can only appear after IPv6 deployment reaches certain level
 - Web was successful because IPv4 was already everywhere (universities, corporates)
 - Unless we have certain level of IPv6 deployment, we will never see "killer app"

- We need to deploy IPv6 to certain level, then killer apps will pop up
IPv6 deployment strategies and current status (ISP POV)
Transition in Japan (from ISP POV)

- Who are we (as IIJ)
- Japanese ISP status on IPv6
- What motivates Japanese ISPs to IPv6?
- IPv6 backbone design
- IPv6 services design
- Customer profile
- Technologies/equipments needed (input to vendors)
Who is IIJ, what kind of IPv6 services offered?

- One of the very first commercial ISPs in Japan
 - (and probably one of the biggest)
- Operational since 1992, IPv6 since 1998

- Connectivity services
 - 2001:240::/32, 3ffe:8020::/28
 - IPv6 tunnel service - since 1999
 - IPv6-only leased line service - since 2000
 - IPv4/v6 dual stack leased line service - since 2001
 - Commercial service, not experimental

- Other services
 - Web server hosting, with IPv4/v6 dual stack support
 - Data center with IPv6 connectivity
 - IPv4/v6 router "SEIL"
 - Consultation - help people design IPv6 network
 - Participate/contribute to KAME, IETF and others
 - KAME: IPv6 stack for BSDs (*BSD, MacOSX, and routers)
ISP's situation in Japan wrt IPv6

- 5+ ISPs are offering commercial services
 - tunnel, leased lines

- 30+ ISPs are offering experimental services

- 5+ IPv6 IXes are operational
 - (both commercial and academic)
 - 50+ ISPs are participating NSPIXP6

- at least 1200 to 1500 /48 sites are in Japan (last year)
 - We can’t count 6to4 sites reliably (so there could be more)
Why are we doing it so early

- For us, it is not early at all!

- ISPs need to act proactively
 - By the time customers start asking for IPv6, we need a working backbone - need to be prepared
 - We need to gather operational experiences much earlier than customers
 - Break the chicken-and-egg problem

- By starting early we can earn more experiences earlier than others
- IPv6 creates a new (and huge) market opportunities
 - We’ll lose potential market/customer we you don’t act sooner!

- Our mission: make IPv6 the default IP protocol
IIJ backbone topology (IPv4)

- Asia, Japan and US (east/west coast)
- Pure IP backbone, no MPLS
- 3Gbps between JP-US XXXcheck
| IIJ backbone topology (IPv4) | |
IIJ backbone topology (IPv6)

- 7 IXes, native peerings with 45 ASes
- Why deploy a separate backbone?
 - CISCO software trains - "S" train for IPv4, "T" train for IPv6
 - Can’t compromise IPv4 SLA (stability of IPv4/v6 router)
Backbone design

- keep in mind - "simple, robust and scalable"
 - IPv4/v6 dual stack routers
 - IOS 12.2T images, all recent JunOS, Hitachi, NEC, Fujitsu...
 - PC router with *BSD can easily handle traffic of today - IPv4:IPv6 traffic = 800:1
 (measured at Tokyo IX last year)

 - Routing
 - BGP4+ over IPv6 for IBGP/EBGP
 - RIPng
 - (OSPFv3 - vendor support is still poor)
 - RFC2772-based route filters at EBGP routers

 - Links
 - RFC2893 configured tunnels (within your AS only)
 - IPv6 PPP on leased lines
 - IPv6 over ethernet/ATM/what-have-you
Unified backbone, or separate?

- **Separate backbone**
 - No SLA compromise to IPv4 services - operators are happy
 - More equipments to babysit
 - Separate bills for leased lines - not pretty
 - Can use IPv6 routers w/ beta firmware, if your IPv6 SLA allows

- **Unified backbone**
 - Chances for SLA compromise to IPv4 services
 - If IPv4/IPv6 dual stack router is not stable enough
 - Less equipments to babysit
 - Single bill for leased lines

- *(tunnel is a complicated beast - be warned)*
Service designs

- Connectivity services
 - IPv6-over-IPv4 tunnels
 - One *BSD box can easily terminate 10^3 tunnels
 - Leased lines
 - DSL - needs more vendor support
 - Data center racks - ethernet drop
 - Charging model? by traffic/bandwidth?

- IX services

- Application/hosting
 - Web hosting, email/messaging/VoIP/whatever

- Service/network integration, consultation
Who are the IPv6 customers? (last year)

- 200+ /48 customers already
 - 10% are leased lines, 90% are tunnels to IPv4 customers
- A couple of /40 delegations
 - Smaller ISPs
Customers are using...

- Honestly we don’t know what they are using, really!
- SSH/FTP/IRC/HTTP/SMTP/NNTP are very common
 - People are using those without even noticing
- They could be trying more exotic stuffs
 - IPsec, Translators, other transition tools, VoIP
 - Note all of the current customers are dual-stack sites, otherwise they won’t be able to query DNS
- Customers do depend on our IPv6 services
 - It’s not a research toy any more
We are waiting for vendors to ship...

- Stabilized IPv6 implementation
 - OSPFv3/IS-IS stabilization is important

- Multicast by IPv6 PIM
 - Waiting for vendor routers support, as we need all routers to speak PIM

- IPsec for protecting routing protocols
 - No vendor support at all at this point
 - Details are lacking in RFC - "use IPsec" is too vague

- MLD-snooping L2 switches
 - IPv6 multicast traffic leak out from all ports!
How the future IIJ IPv6 backbone will look like

- Unified IPv4/v6 backbone (router vendors, hurry up!)
What kind of technologies are important? (1)

- Robust and stable routers!
 - so that we can unify IPv4/v6 backbone

- Make SO-HO/home routers IPv6 ready

- IPv6 support in DSL aggregators and stuff

- IPv6-ready root/ccTLD/gTLD DNS servers
 - To allow deploying IPv6-dominated/IPv6-only network

- More educational materials for IPv6
 - Books, webpages, reading materials, hands-on tutorials
What kind of technologies are important? (2)

- Monitoring tools IPv6 support
 - SNMP, ping, whatever

- New security model/tool for IPv6, something better than firewall

- Prefix delegation
 - automate address space assignment from ISP to customer
How you can start?

- In general
 - Raise awareness, educate, advocate

- Customer appliances
 - Coordinate with ISPs, deploy IPv6 into the products
 - Design products with IPv6 in mind - it will give you various advantages
 - Game consoles are good place to start - you can include the whole IP stack into CD/DVD

- ISP - deploy IPv6 network, start IPv6 services
 - Even if an experimental one, important to make it available
 - Otherwise customers cannot use it

- Server farms/service providers
 - Make sure your server/services are IPv6 ready
Where are the market possibilities?

- **Customer appliances**
 - New designs/applications that take advantage of IPv6

- **ASP/integration services**
 - Help people deploy/transition to IPv6, design IPv6 network
 - Provide transition tools

- **Routers**
 - Core routers
 - Japanese vendors are trying to get market share
 - SO-HO/home routers
 - if you have contacts, please let me know!

- **ISP**
 - Deploy and provide IPv6 services earlier than others

- **Others**
 - Domains where IP technology has not reached yet (taxicabs)
How you can deploy IPv6 to your campus?

- You should deploy IPv6 to every IPv4 segments
 - Separate IPv6/v4 segments do not make sense
- L2/L3 switch based deployment (cisco catalyst 6000)
 - create a trunk port that can access all ethernet segments
 - put a BSD box to the trunk port
 - BSD box behaves as the IPv6 router for every segments
 - BSD box tunnels IPv6 traffic to outside using IPv6-over-IPv4 tunnel
- If you have multiple campuses in remote locations
- If you have some routers that cannot be upgraded to IPv6
 - Have IPv6 router at each locations, establish IPv6-over-IPv4 tunnel between campuses
Summary

- Why transition to IPv6?
- Transition in Japan (from ISP POV)
 - ISPs should deploy IPv6 now, if not yesterday
 - Or you will lose your potential customers!
 - No need to deploy fancy IPv6 network
 - Keep it simple and robust, that’s what the Internet is about
- Market possibilities
- How you can start
Homework assignment

- Understand/investigate IPv6 activity in your country
 - check www.6bone.net and see if your country has pTLA address space assignment (3ffe:xxxx::/32)
 - check www.apnic.net and see if your country has sTLA address space assignment (2001:xxxx::/32)

- Understand/investigate ISP’s awareness to IPv6 in your country
 - Contact your company/university’s ISP/other ISPs if they plan to start IPv6 services
 - If so, ask when will it be
 - If not, ask the reasons why, and try to convince them to start IPv6 services
 - If you are ISP yourself, make your network IPv6 ready